
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP022173
TITLE: On the Provision of Safety Assurance via Safety Kernels for
Modern Weapon Systems

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Proceedings of the Workshop on Software Assessment [5th] Held
in Chicago, Illinois on November 8, 2005

To order the complete compilation report, use: ADA450578

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP022169 thru ADP022175

UNCLASSIFIED

On the Provision of Safety Assurance via Safety Kernels for Modern Weapon Systems

J. Bret Michael', Anil Nerode 2, and Duminda Wijesekera3

'Naval Postgraduate School, Monterey, Calif, bmichael(a nps.edu
2George Mason University, Fairfax, Va., dwijesek(a)gmu.edu

3Cornell University, Ithaca, N.Y., anil(a math.cornell.edu

"* What type of safety-kernels architecture should be
Abstract* employed?

"* Which parts of the safety-kernel functions should
In this paper we discuss some of the challenges and be allocated to software, hardware, and humans?

approaches for providing safetv assurance for modern The safety kernel needs both sufficient control and
weapon svystems via software-based safet kernels. We functionality to return the system that has entered an unsafe
argue that software-centric approaches for designing and state to a safe (or less risky) state.fetv~sat kerel arfad Wef (orh tess risky des'e
verifying safety kernels areflawed. We claim that the design So why in the past did so few safety-critical systems have
and verification of safety kernels for complex event-driven safety kernels? Many factors played a role in stymieing the
real-time systems is a matter of physics and dynamical introduction of safety kernels into safety-critical systems.
system analysis of system design. We describe an approach For example, consider design experience. There was no
,for rapid/v prototvping safety kernels (and plants and concept of a safety kernel in the analog version of legacy
controllers) using an agent-based safet -kernel architecture. systems that have since been reengineered to incorporate
The approach utilizes multiagent modeling and hybrid digital technology. Another factor is engineering judgment.
automata. Up until recently there was little experience upon which to

judge the prudence of using safety kernels rather than the
Keywords:" System safety, safety kernel, software, hybrid tried-and-true safety-engineering techniques-the use of a
automata, verification safety kernel was viewed as posing an untenable level of risk

1. INTRODUCTION not only by the developer and operator of a system, but also

A safety kernel is a component specifically designed to by safety certification and accreditation boards.

reduce the probability of occurrence of mishaps by
performing one or more of the following types of fail-safe 2. SAFETY KERNELS FOR WEAPON
functions in a system: detecting, tolerating, and isolating SYSTEMS
faults. The design of a safety kernel should be based on the The first weapon within the U.S. Navy's arsenal to use a
following information obtained from hazard analyses of the safety kernel was the fire-by-wire Rolling Airframe Missile
target system: (RAM) Guided Missile Weapon System (GMWS). RAM is

"• Hazard causal factors, along with frequency and quick-reaction, fire-and-forget missile designed to destroy

severity of hazards and mishaps anti-ship missiles.

"• Complexity of the system protected by the safety The GMWS is an example of a complex event-driven

kernel real-time system. The system performs real-time processing

"* Number of safety-related functions in the system of sensor data in order to detect, track, and target threat
objects. GMWS and the RAM itself are both safety-critical

Based on the foregoing information, decisions need to be because they control the release of energy-energy that can
made about the following: cause death or injury to humans, property damage, or

• How much control is to be exercised by the safety damage to the environment. For example, both inadvertent
launches and premature detonation of a RAM in close
proximity of the mother ship are hazards which need to be

controlled.
e vLet's take a look at the Launcher Control/No-Point No-The views and conclusions contained in this Fire (LC/NPNF) subsystem of the GMWS. The LC/NPNF

presentation are those of the author and should not be system m t the poeta T he missil

interpreted as necessarily representing the official policies or launcher into a NPNF zone. The launcher is mounted to the

endorsements, either expressed or implied, of the U.S. deck of a ship. The NPNF zone consists of the deck, the
Governlnent. ships superstructure (e.g., bridge, antennas), and other areas

102

on deck such as where sailors may be located. A safety Examples of safety kernel architectures that lie within the
incident occurs if the launcher points in a NPNF zone. If the middle of the spectrum are safety executives and monitor-
launcher points or fires in a NPNF zone and fires, a mishap is actuator patterns. The former initiates fail-safe processing:
almost certain to occur. monitors the state of a system and ensures that the software

Prior to RAM GMWS, the LC/NPNF subsystem was cannot enter a potentially unsafe state, in addition to
controlled via electromechanical mechanisms, including coordinating recovery from faults. The latter returns a
metal cams, switches, and roller contacts. However, the U.S. system to a known less-risky state and resumes processing
Navy found that its reliance on electromechanical means for via monitoring the actuation functions of another process and
enforcing NPNF safety policy was not a cost-effective the state of the actuators. The RAM GMWS LC/NPNF is an
approach if modifications were made to a ship's example of the application of the monitor-actuator pattern.
superstructure or the weapon needed to be installed on
another class of ship (e.g., cruiser, frigate). In other words, 4. NEED FOR A NEW APPROACHES TO
any changes to the superstructure or movement of the
weapons system to either a different mounting position or PROVIDING SAFETY ASSURANCE
another platform would require the reengineering of the Safety design requirements are typically easier to
electromechanical system. This was one of the reasons the implement in the weapons system or weapons-related system
U.S. Navy assumed the risk of introducing the use of than in an external system. The way in which safety design
software-controlled dynamic NPNF zones, requirements are implemented in U.S. Navy weapons

The software-controlled NPNF function of the LC/NPNF systems is relatively homogeneous: known safety attributes
subsystem is an example of a safety kernel. The NPNF and characteristics of these systems are already relatively
safety kernel detects the potential movement of the launcher well known to the system safety programs.
into a NPNF zone. If the NPNF safety kernel determines So why consider the use of safety kernels? Assessing the
that the Launch Control System (LCS) will move the level of control to be exercised over the weapons or
weapon into the NPNF zone, the kernel takes control of the weapons-related system becomes increasing challenging as
LCS and executes an orderly shutdown of the GMWS. the level of system integration and complexity increases.
However, the NPNF processor does not provide the fidelity Such assessments are especially problematic to perform for
or control necessary to train or elevate the launcher to system-of-systems. A svstem-of-svstems is an amalgamation
prosecute an engagement. The NPNF processor performs of legacy systems and developing systems that provide an
the following two tasks: (i) stops the launcher movement enhanced capability greater than that of any of the individual
and (ii) interrupts concurrently the Launcher Control systems within the system-of-systems. Systems-of-systems
Processor and the firing circuit to the missile (in order to are a great departure from standalone systems. There is
preclude arming and firing of the RAM). uncertainty and risk associated with assumptions and

The use of a software-controlled NPNF safety kernel for unknowns regarding the interfaces between the component
the LC/NPNF subsystem is a double-edged sword: it systems. There is also uncertainty and risk associated with
increased the complexity of the system (i.e., in terms of state- system interoperability issues.
space) and approximately doubled the size of control Let's take a look at a real-world system-of-systems--the
software of the GMWS, but on the other hand it reduced Ballistic Missile Defense System (BMDS). Like the RAM
both the overall level of risk of putting the system into GMWS, the battle manager element of the BMDS is a real-
operation and the need to make costly changes to the GMWS time, event-driven complex system. However, it is also
hardware or the ship's superstructure. asynchronous and distributed. The battle manager must

interface to a large number of heterogeneous legacy, organic,
3. and even foreign systems, some of which may not have

undergone sufficient safety assessment. In addition, the
ARCHITECTURES configuration of the system needs to adapt via plug-and-play

At one end of the spectrum of safety-kernel architectures components to changes in the environment; that is, the
is the watchdog safety kernel. This kernel has limited system needs to be readily reconfigurable during operation.
functionality: its primary function is to detect failures and Thus, traditional approaches for providing safety assurance
either reset the processor or throw an exception to terminate of BMDS will not be cost effective and do not lend
a process. themselves well to verification.

At the other end of the spectrum are dual and multiple
redundant architectures, which may consist of homogeneous 5. WHAT IS THE WAY FORWARD?
or heterogeneous safety kernels. Dual redundant safety System safety relies on predictability. There is a need to
kernel architectures only provide for fault detection. In know what the system must guard against (i.e., hazards).
contrast, multiple redundant safety kernel architectures How does one handle unanticipated hazards? Adaptive
provide for fault detection, fault tolerance, and fault isolation. systems can have lots of configurations; it is hard to

103

characterize these configurations because each instance of a 0 Spartan and Draconian designs of the system
component has a different view of the system. 0 Distinguishing up front which system requirements

Moreover, the set of things in the environment is neither are stable from those that are expected to change
closed nor stable. However, it might be possible to create a 0 Institutionalizing the invariant part of the principles
sufficiently large closed world so that one can deal with all of operation of the system
of the system hazards. Even so, there will still be a challenge 0 Taking a positive approach to handling emergent
to validate an upper bound on the probability of a system properties of systems, thinking in terms of
failure leading to a given hazard. integration

The lack of predictability is at odds with the view of a 0 Defining emergent requirements and ensure
system for which safety, reliability, and other forms of realization
dependability engineering (i.e., dependability encompasses
all of the "ilities") typically rely. A Spartan sqfety kernel provides for liveness properties

One of the promising new approaches to providing safety with service guarantees. The Spartan safety kernel only
assurance for weapon systems is to think in terms of provides services needed to achieve critical requirements in a
dependability disciplines, timely manner.

A Draconian global structure provides for safety with

5.1 CHALLENGES non-interference guarantees. The structure affords for the
visible dependencies to be much less than potentialIn order to explore a dependability-disciplines view of dependencies, with fault containment at boundaries and no

providing safety assurance for weapon systems, one must invisible interactions.

treat a system or system-of-systems in terms of integration The safty executive resides within the Spartan safety

properties in at least two respects: (i) to identify the kernel. The safety executive monitors in a cyclic fashion the

emergent requirements of the weapon system from the high-level functionality (i.e., execution of high-level

collaborations (i.e., determine value-added, rather than what proceses fu t y or system-of-systems ito -en et

must not happen) and (ii) to certify that the legacy, organic, the processes follow the desired sequence of execution. For

and foreign systems meet constraints of the well-defined thprcsefolwhediedeqneofxcuo.Fr
aplug-ind foreig , systems m onstrfaits) of the well-dined example, in the case of ballistic missile defense, the safety
"plug-in slots" (i.e., system interfaces) of the plug-and-play executive of the safety kernel associated with one of the
reconfigurable system. replicated battle managers would monitor whether the battle

We can construct a wish list for weapon systems, to manager's processes for prosecuting a missile engagement
include, for example, the following desires: execute in the required manner.

"• Coordinated battle management at system-of-
systems level vice system level 5.3 BATTLE MANAGER DEVELOPMENT

"• Predictable behavior of system-of-systems In addition to the Spartan safety kernel, we foresee the
"• Integrated systems vice interconnected systems, need for the weapon system to also have one or more battle

bringing together legacy systems, new system management kernels-kernels that contain only the basic
developments, and nondevelopmental (e.g., functions of battle management. Derived from the kill chain,
commercial- and government-off-the-shelf) items these basic battle-management functions will manage the use

"• Minimal effort for modifications to system-of- of the system's computing resources to ensure that all time-
systems critical, battle-management events are processed as

"• System architectures that outlive their components efficiently as possible. All other weapon-system
functionality is to be placed in components that interface

5.2 ACHIEVING DEPENDABILITY 2 with the battle management kernel via the aforementioned

We advocate a departure from business as usual in the well-defined plug-in slots. The Spartan safety kernels
monitor the behavior of the battle management kernels,

engineering of weapon systems, especially those that a part mntrtebhvo ftebtl aaeetkresengineeringof weapon -systems, by requiring the following: taking action as needed to enforce safety policy, while the
battle management kernels are responsible for monitoring the

behavior of the weapon system or system-of-systems of
The concept of a Spartan safety kernels and weapons, taking action as needed to enforce the rules of

Draconian design of safety-critical systems emerged during engagement and other policy and doctrine related to
discussions between Valdis Berzins and Bret Michael. Bret prosecuting an engagement.
Michael presented these concepts in the context of missile
defense at the Defence and Aerospace Research Partnership
in High Integrity Real Time Systems (DARP HIRTS)
Workshop, Manchester, England, on May 5, 2004.

104

6. DESIGN AND VERIFICATION OF SAFETY The next step we intend to take is to develop a
professional-grade simulation test bed, with the aim of

KERNELS providing a means for verifying the design of safety kernels
Existing software-centric approaches for designing and (and plants and controllers).

verifying safety kernels are flawed: these approaches rely on
models of faults which occur at discrete times and can be
identified. This has little to do with systems that are
governed by a continuous sequence of messages which alter
the controlled behavior of devices (e.g., networks of
weapons and sensors). In essence, today's popular
approaches are based on verifying that a pure software
system obeys its software specification and does not send out
ineligible signals.

What is needed is a verification approach that provides
the dependability engineer with the ability to determine what
sequences of control actions would cause a catastrophe. No
one control action in the sequence has any meaning, but the
whole sequence may send the system spiraling out of control
(i.e., positive feedback, not control).

However, we do not believe that the design and
verification of safety kernels is software problem. We claim
that the design of safety kernels for complex event-driven
real-time systems is a matter of physics and dynamical
system analysis of system design.

For verification purposes, one needs to provide simulation
or mathematical evidence for complex systems that the real
systems of physical devices are similar enough to their finite
automaton approximations so that the finite automata
controls would control the system in the real world.

Hybrid automata are needed for prototyping and verifying
safety kernels. The automata can be used to represent
complex real-time systems as distributed systems of
interacting physical (e.g., sensors and launch systems) and
rule-based (e.g., decision makers and threat evaluators)
agents. Physical devices are modeled as Buchi finite state
automata on infinite strings; Buchi finite state automata
differ from finite automata in that they operate on infinite
words and have a different acceptance condition. Agent
networks of Buchi automata constitute a special case of
Rabin automata (have strong-fairness acceptance) which is
comnputationally feasible and represent many significant
aspects of multiagent systems.

Doctrine, policy (including safety policy) and
organizational structures are treated as rule-based constraints
on system behavior.

Every agent is modeled as Datalog program, which can
then be used to run simulations with the aim of determining
the effects of inserting, modifying, or deleting physical and
rule-based agents. This approach provides a means for rapid
prototyping of safety kernels (and plants and controllers)
using an agent-based safety-kernel architecture.

We believe that Datalog is a good choice of modeling
languages because it is expressive enough to represent the
agents, but yet compiles decently to real-time deterministic
Buchi automata.

105

